На главную

Роль оксида азота в патологии



П.П.Голиков, А.П.Голиков НИИ скорой помощи им. Н.В. Склифосовского

Огромный интерес исследователей к изучению патогенетической роли оксида азота первоначально был обусловлен новыми исключительно интересными публикациями, свидетельствующими о том, что расслабляющий сосуды фактор идентичен оксиду азота, а многочисленные лекарственные нитраты реализуют свой ангиотропный эффект благодаря освобождению из нитратов оксида азота [20, 45, 53, 57]. Большие трудности на пути открытия физиологической и патофизиологической роли оксида азота были связаны с тем, что молекула оксида азота имеет лишний электрон, что обусловливает высокую химическую реактивность и короткий полупериод жизни (от 6 до 30сек) [53, 57].

За короткий период, прошедший с момента открытия ангиотропной функции оксида азота, накоплен огромный экспериментальный и клинический материал, позволивший установить субстрат биосинтез оксида азота, ферменты и изоферменты, принимающие участие в биосинтезе оксида азота, тканевую специфичность изоферментов оксида азота, активаторы и ингибироты изоферментов оксида азота, молекулярный механизм физиологического и патофизиологического эффекта оксида азота, разработать и внедрить в практику препараты, активирующие и ингибирующие функцию различных изоферментов синтазы оксида азота, установить функциональную взаимосвязь ангиотензина II и оксида азота в регуляции сосудистого тонуса, а также сопряженность эффектов супероксидного радикала и оксида азота в реализации окислительного стресса [1].

Оксид азота является аутокринным и паракринным медиатором, так как, будучи синтезирован в каких-либо клетках, он способен влиять на метаболические процессы как в самих этих клетках, так и в расположенных по соседству [2]. Оксид азота, как мощный эндогенный вазодилататор, принимает участие в регуляции системного и легочного сосудистого сопротивления и процессах коагуляции крови [34]. Оксид азота функционирует в центральной и вегетативной нервной системе. По эфферентным нервам этот агент регулирует деятельность органов дыхательной систем, желудочно-кишечного тракта и мочеполовой системы [1]. Оксид азота подавляет пролиферацию гладкомышечных клеток сосудов [25, 39]. Совершенно закономерно, что снижение активности оксида азота вызывает вазоконстрикцию и тромбоз [17].

Оксид азота синтезируется из гуанидинового атома азота L-аргинина синтазой оксида азота, которая присоединяет молекулярный кислород к конечному атому азота в гуанидиновой группе L-аргинина [17]. Синтаза оксида азота также продуцирует неактивный конечный продукт L-цитруллин, который является маркером активности синтазы оксида азота [17, 57]. Синтаза оксида азота (СОА) включает в себя три изофермента -- синтазы I, II, III типа [25, 39]. По физиологическим свойствам синтазы оксида азота подразделяются на конститутивные (кСОА), включающие нейрональную (I тип) и эндотелиальную (III тип), и индуцибельную (иСОА) [3, 8]. В сосудистом эндотелии, нервной ткани и тромбоцитах преобладает кСОА [8, 38].

Оксид азота необратимо инактивируется реакцией с гемоглобином (оксигенированной и деокигенированной формами) в просвете кровеносного сосуда, супероксидным радикалом в стенке кровеносного сосуда [27, 42] или кислородом в свободном растворе [63]. Реакция оксида азота с кислородом сопровождается образованием стабильных конечны продуктов -- нитрита и нитрата, которые являются косвенными маркерами концентрации оксида азота в организме [56, 67].

Определение нитрита и нитрата, стабильных конечных продуктов оксида азота, в крови и других биологических жидкостях производят различными методами. При определении нитрита используется фотометрический метод [65] Тотальное определение содержания нитрита и нитрата в плазме крови также проводится фотометрическим методом, однако предварительно превращают нитраты в нитриты с помощью покрытой медью кадмиевой колонки [43] или редуктазы [14]. В последнее время для определения нитратов и нитритов в биологических жидкостях используются высокоэффективная хроматогафия [23] и капиллярный электрофорез [15].

Современное представление о механизме реализации биохимического действия оксида азота достаточно обосновано разработано для сосудистой системы. Так, в ответ на физическую и химическую стимуляцию в сосудистом эндотелии на короткий период повышается исходное образование оксида азота с помощью СОА I и III типов. Увеличение синтеза оксида азота синтазой оксида азота происходит под влиянием ацетилхолина, брадикинина, 5-гидрокситриптамина, адениловых нуклеотидов [28, 38, 59]. Участие синтазы оксида азота в сосудистой регуляции сопряжено с сосудорасширяющим эффектом этих нейротрансмиттеров, стимулирующих вход кальция в эндотелиальную клетку. Повышение уровня внутриклеточного кальция сопровождается активиацией, прежде всего, эндотелиальной формы синтазы оксида азота кальмодулин-зависимым механизмом, что ведет к кратковременному выделению небольших количеств оксида азота (пикомоли). Последний диффундирует в клетки прилежащих гладких мышц сосудов и связывается со специфическими рецепторными сайтами гема, который является составной частью молекулярной структуры растворимой цитоплазматической гуанилатциклазы [3]. Связывание оксида азота с группой гема растворимой гуанилатциклазы индуцирует конформационное изменение, которое смещает железо из плоскости порфиринового кольца, тем самым активирует растворимую гуанилатциклазу. При этом увеличивается концентрация циклического гуанозинмонофосфата (цГМФ) в клетке-мишени, что вызывает физиологическое действие [10]. Так, в гладкомышечных клетках цГМФ снижает уровень внутриклеточного кальция, что приводит к расслаблению клетки и вызывает вазодилятацию [24, 53].

Растворимые гуанилатциклазы являются гетеродимерами двух различных субъединиц: А и В. К настоящему времени клонированы две А и две В субъединицы [52, 68, 69]. Другие гемсодержащие белки (аконитаза и цитохромы митохондриальной цепи электронного транспорта) также способны реагировать с оксидом азота, но физиологические последствия этого взаимодействия пока не установлены [57].

Сигнал оксида азота может имитироваться органическими нитратами (нитроглицерин), которые используются для лечения стенокардии, инфаркта миокарда и некоторых форм застойной сердечной недостаточности [9, 61]. Нитроглицерин входит в клетку, где он трансформируется тиолзависимой ферментной системой в оксид азота и близкородственные соединения [22]. Напротив, такие вазодилятаторы, как вновь разработанный STN-1, трансформируются в оксид азота неферментативными реакциями [9]. Это различие в механизме действия является принципиальным в развитии толерантности при лечении органическими нитратами. Продолжительное введение нитроглицерина индуцирует состояние толерантности. Механизм толерантности включает в себя инициирование антирегуляторных рефлексов и изменений метаболизма в ткани-мишени, так что нитроглицерин теряет свою терапевтическую эффективность [9]. Механизм толерантности не полностью понятен, но исследования in vitro показали, что нитроглицерин быстро истощает сульфгидрильные группы, необходимые для его биотрансформации в оксид азота [37, 62]. Введение N-ацетилцистеина обращает толерантность нитроглицерина [37].

Кроме своей центральной роли вазодилататора, оксид азота выполняет функцию нейротрансмиттера и играет важную роль в долговременном потенцировании памяти нейронов, ингибирует адгезию форменных элементов крови к эндотелию [11,35]. Биосинтез оксида азота в центральной нервной системе и тромбоцитах реализуется конститутивной синтазой оксида азота (синтаза 1 типа). Агрегированные тромбоциты продуцируют оксид азота, который угнетает агрегацию тромбоцитов [41]. Эндотелиальный оксид азота подавляет действие вазоконстрикторов (тромбоксана А2 и серотонина), выделяемых из тромбоцитов [41] Это обусловлено действием оксида азота на сигналы адгезивных молекул так же, как его способностью ингибировать экспрессию адгезивных молекул и хемокинов эндотелия [55,64].

При эссенциальной и вторичной гипертонии, в первую очередь, страдает функция эндотелия резистивных артерий, снижается регулирующее влияние оксида азота на сосудистый тонус и адгезию тромбоцитов к сосудистому эндотелию. Внутривенная инфузия L-аргинина понижает кровяное давление у больных и с эссенциальной, и с вторичной гипертензией. При этом острая инфузия L-аргинина снижает общее сосудистое сопротивление и среднее артериальное давление, учащает сердечное сокращение, увеличивает сердечный выброс. Эти исследования также выявили увеличение цитруллина в плазме, нитрата и нитрита в моче, -- маркеров увеличенной продукции оксида азота. Кровяное давление снижалось больше у гипертензивных, чем у нормотензивных пациентов после инфузии L-аргинина [30]. Интересные данные получены при изучении влияния предшественника оксида азота L-аргинина на системную и портальную гемодинамику у 20 больных с циррозом печении. Внутривенная инфузия L-аргинина вызывала системную вазодилатацию, более интенсивную у больных с циррозом печени, чем у здоровых лиц контрольной группы. Под влиянием L-аргинина повышался печеночный кровоток [62]

Антигипертензивный эффект ингибиторов ангиотензинконвертирующего фермента тесно связан с функцией оксида азота [28]. Известно, что ангиотензинконвертирующий фермент является ключевым при образовании ангиотензина II [4]. Биосинтез ангиотензинконвертирующего фермента контролируется глюкокортикоидными рецепторами клеток сосудистого эндотелия [5]. Естественно, что уровень ангиотензина II также контролируется глюкокотикоид-рецепторным механизмом [7]. Обнаруженная тесная функциональная взаимосвязь ангиотензина II с расслабляющим сосуды фактором -- оксидом азота может быть косвенным подтверждением возможной регуляции оксида азота глюкокортикоид-рецепторным механизмом. Об этом свидетельствуют данные о том, что глюкокортикоиды ингибируют транскрипцию индуцибельной синтазы оксида азота [5, 7]. Анализ индуцирующего механизма действия ангиотензина II на уровень оксида азота, проведенный с использованием блокатора рецепторов I типа ангиотензина II -- лозартана, аналога L-аргинина -- N(омега)-нитро-L-аргинин-метил-эфира, антагониста кaльмoдулинa-W-7, пoкaзaл, что ангиотензин II активирует эндотелиальную кальмодулин-зависимую синтазу оксида азота [49]. При гипертонии ингибиторы АСЕ препятствуют ухудшению связанной с оксидом азота вазодилятации. Ингибиторы ангиотен-зинконвертирующего фермента эналаприлат и рамиприлат дозозависимо повышают содержание оксида азота в венечных артериях и аорте [70].

В макрофагах, нейтрофилах, кардиомиоцитах, гепатоцитах обнаружена иСОА, которая является кальций независимой [20]. Ген иСОА человека локализован в 17 хромосоме [16[. При активации иСОА происходит продолжительное повышение уровня оксида азота [8, 20, 54]. При этом продукция оксида азота может в 1000 раз превышать количество оксида азота, продуцируемое кСОА [20, 39, 50]. Индуцирующими агентами для иСОА являются эндотоксин, у-интерферон, интерлейкин-1 и фактор некроза опухоли-а [19, 33, 40, 51]. Активированные гамма-интерфероном и липополисахаридом макрофаги продуцируют высокие концентрации оксида азота, которые не действуют через цАМФ, но проявляют прямое цитотоксическое и иммуногенное действие [58]. Под влиянием оксида азота происходит резкая вазодилатация, усиливается сосудистая проницаемость, формируется отек и последующее развитие воспалительной реакции [20, 29,44]. При этом оксид азота соединяется с супероксидом, образует пероксинитрит анион (ОNОО-), который индуцирует повреждение ДНК и мутацию [3, 18, 32]. Пероксинитрит анион участвует в реализации окислительного стресса [3, 18].

Патогенетический механизм окислительного стресса характеризуется снижением уровня АТФ, повышением содержания гипоксантина, превращеним ксантиндегидрогеназы в образующую прооксиданты ксантиоксидазу. В условиях гипоксии при восстановлении кровотока происходит приток молекулярного кислорода и кальция, что ускоряет взрыв кислородпроизводных свободных радикалов, возникающих в результате действия ксантиноксидазы и других оксидантных ферментов, в том числе и индуцибельной синтазы оксида азота. Эта оксидантаная среда генерирует перекиси липидов, которые увеличивают проницаемость для кальция и активируют фосфолипазу А2 [3]. В свою очередь, эти события запускают дальнейшую экспрессию индуцибельной синтазы оксида азота, адгезивных молекул и выделение фактора, активирующего тромбоциты, лейкотриенов, тромбоксана А2 и прочих индукторов воспаления. Нейтрофилы, курсирующие в этой неблагоприятной среде, активируются, прилипают к репефузированной ткани, генерируют супероксидные анионы и оксид азота, образуют пероксинитрит, сопряженно индуцируя некроз тканей [17, 32]. Следовательно, оксид азота является одним из ключевых звеньев в патофизиологии окислительного стресса [3].

иСОА играет чрезвычайно важную роль в патогенезе многих экстремальных состояний, в том числе и септического шока [31, 47]. Интенсивная и продолжительная активация индуцибельной синтазы оксида азота при септическом шоке сопровождается мощным усилением биосинтеза оксида азота, который играет двойственную роль в патогенезе септического шока. Так, он оказывает защитный антибактериальный эффект, но в то же время проявляет неблагоприятное действие, включая устойчивую вазодилятацию, гипотензию и гипореактивность к сосудосуживающим агентам [21]. При септическом шоке установлено значительное повышение общей сывороточной концентрации нитрита и нитрата, которая положительно коррелировала с концентрацией эндотоксина в крови и отрицательно -- с гемодинамическими нарушениями у этих больных [26]. У детей с септическим синдромом отмечено выраженное повышение общих сывороточных нитритов и нитратов (1 день -- 118±93 мкмоль/л; 2 день -- 112±94 мкмоль/л; 3 день -- 112±91 мкмоль/л; контроль -- 43±24 мкмоль/л). При выраженной гипотензии у детей с септическим синдромом выявлено более высокое содержание общего сывороточного нитрата и нитрита (145±97 мкмоль/л) по сравнению с данными, полученными у детей с септическим синдромом без гипотензии (82±76 мкмоль/л) [66]. При ожоговой болезни (общая площадь ожога 37±19%) уровень общего сывороточного нитрита и нитрата в течение 6 суток был выше, чем в контрольной. Однако максимальное повышение стабильных конечных продуктов оксида азота отмечено у обожженных с сепсисом (177±131 мкмоль/л) по сравнению с не инфицированными обожженными (83±48 мкмоль/л) [48]. Существенное повышение уровня конечного продукта оксида азота нитрита в крови отмечается у больных с тяжелой сочетанной травмой [6]. Воспалительная реакция тесно коррелирует с уровнем конечных продуктов оксида азота при кардиохирургических операциях [13], остром колите [36]. Повышение уровня оксида азота характерно при патологической беременности [65].

По-видимому, повышение уровня конечных продуктов оксида азота в крови больных с выраженной общей воспалительной реакцией играет важную роль в высвобождении интерлейкина-1 бета, интерлейкина-6, интерлейкина-8 и других индукторов воспалительной реакции [26]. Определение оксида азота хемилюминесцентным методом в крови больных ревматоидным артритом, характеризующимся выраженной воспалительной реакцией, свидетельствует о многократном повышении его уровня (293±108 нмоль/л) по сравнению с контролем (36±4 нмоль/л). Уровень оксида азота, интерлейкина-6, фактора некроза опухоли-а существенно был выше в активной фазе ревматоидного артрита, чем в фазе ремиссии [60]. Системная красная волчанка также характеризуется выраженными фазами воспаления. Изучение содержания нитрита в сыворотке крови 46 больных системной красной волчанкой свидетельствует о значительном повышении нитрита в сыворотке крови этих больных (37±6 мкмоль/л) по сравнению с нормой (15±7 мкмоль/л). В этих исследованиях абсолютные значения конечного продукта оксида азота у здоровых лиц значительно ниже, чем в исследованиях других авторов. Это связано с тем, что в данном исследовании авторы определяли в сыворотке крови только нитрит [12].

Больные с уремией нередко погибают от спонтанного желудочно-кишечного кровотечения во время операции или биопсии почки. Повышение уровня оксида азота может быть одной из причин спонтанного кровотечения при уремии, поскольку оксид азота ингибирует агрегацию и адгезию тромбоцитов, а ингибирование индуцибельной синтазы оксида азота при хронической почечной недостаточности полностью нормализует параметры свертывающей системы крови [57].

При лечении заболеваний, характеризующимися избытком оксида азота в крови, в комплексную терапию все чаще включаются препараты, ингибирующие активность индуцибельной синтазы оксида азота. Клиническое применение получили препараты аналоги L-аргинина, такие как N(омега)-нитро-L-аргинин-метил-эфир (L-NAME), N(дельта)-монометил-1-аргинин (L-NMMA) [34]. Глюкокортикоиды (преднизолон, дексаметазон) ингибируют транскрипцию индуцибельной синтазы оксида азота и снижают содержание конечных метаболитов оксида азота в крови, что, по-видимому, и определяет их высокую терапевтическую активность при состояниях, характеризующихся гиперпродукцией оксида азота [7, 46].

В настоящее время ведется активный поиск селективных ингибиторов индуцибельной синтазы оксида азота, регуляторов функции гуанилатциклазы и индукторов конститутивной синтазы оксида азота, соединений, способных пролонгировать эффект оксида азота и обеспечивающих транспорт оксида азота к различным органам и тканям [2, 3, 7].

Источник: Журнал Топ Медицина №5, 1999

http://www.remedium.ru

 

На главную

 

Сайт создан в системе uCoz